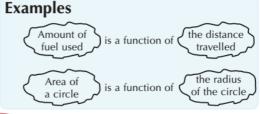
Functions & curve sketching

What is a function?

A function describes the relationship between two sets of quantities where one set depends on the other set.

The letters f, g and h are usually used for the names of functions.

Think of a function as:

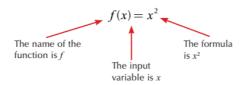


e.g. distance travelled e.g. radius of circle

e.g. fuel used e.g. area of circle

Function notation

Here is an example of function notation and its meaning:



You may evaluate this function for a particular value of *x*:

$$f(5) = 5^2 = 25$$
.

lf

10.

Every occurrence of x is replaced by 5.

The value of f when x = 5 is 25.

An alternative notation is:

$$f: x \to x^2$$

$$f: 5 \rightarrow 5^2$$

The input is 5 and the output is 25.

Example

Given that $g(n) = n^2 - 4n$ evaluate g(-2)

Solution

$$g(-2) = (-2)^2 - 4 \times (-2) = 4 + 8 = 12$$

1.	If	f(x) = 3x - 4	Evaluate:	(a)	f(2)	(b)	f(-1)
2.	If	$f(x) = x^2 - 1$	Evaluate:	(a)	f(4)	(b)	f(-2)
3.	If	$f(x) = 2x^3 + 3$	Evaluate:	(a)	<i>f</i> (3)	(b)	f(-1)
4.	If	$f(x) = 3x^2$	Evaluate:	(a)	<i>f</i> (5)	(b)	f(-4)
5.	If	$f(x) = 3x^2 - 1$	Evaluate:	(a)	f(4)	(b)	f(-2)
6.	If	f(x) = 7 - x	Evaluate:	(a)	<i>f</i> (3)	(b)	f(-7)
7.	If	$f(x) = 5 - x^2$	Evaluate:	(a)	<i>f</i> (2)	(b)	f(-3)
8.	If	$f(x) = -x^3$	Evaluate:	(a)	<i>f</i> (1)	(b)	f(-4)
9.	If	$f(x) = 4 + x^2$	Evaluate:	(a)	<i>f</i> (5)	(b)	f(-3)

 $f(x) = 3 + 2x - x^3$ Evaluate: (a) f(2) (b) f(-1)

Quadratic Functions

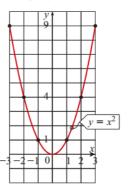
The parabola

A graph showing the values of x^2 for all values of x can be built up from a few particular values.

x	-3	-2	-1	0	1	2	3
$y = x^2$	9	4	1	0	1	4	9
	♥ (- 3, 9) 🕴	♥ (−1, 1)	\	(1, 1)	÷	V (3, 9)
		(-2, 4)		(0, 0)		(2, 4)	

Notes

- (1) This type of graph shape is called a **parabola**.
- (2) The graph has symmetry, with the *y*-axis (the line x = 0) being the axis of symmetry.
- (3) The graph has a minimum turning point at the origin (0, 0). This means that x^2 has a minimum value of 0 when x = 0.
- (4) The equation y = 0 or $x^2 = 0$ has one **solution (root)**, namely x = 0.

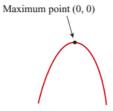


The graph $y = kx^2$

For k > 0 (positive) the graph is concave upwards:

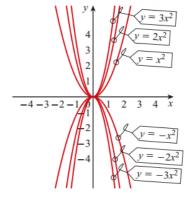
Minimum point (0, 0)

For k < 0 (negative) the graph is concave downwards:



top tip

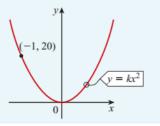
In your exam $y = kx^2$ graphs will only be considered with k as an integer.



Note: The value of *k* affects the steepness but not the turning point of the curve.

Example

Use the information in the diagram to calculate the value of k.



Solution

(-1, 20) lies on the curve so x = -1 and y = 20 satisfy the equation $y = kx^2$

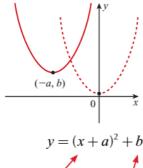
This gives: $20 = k \times (-1)^2$

so $20 = k \times 1$

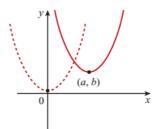
and therefore k = 20.

The graphs $y = (x + a)^2 + b$ and $y = (x - a)^2 + b$

The graph $y = x^2$ (see previous page) is moved to get:



move $y = x^2$ and also a units to the left b units up



 $y = (x - a)^{2} + b$ move $y = x^{2}$ and also b units up the fight and also b units up

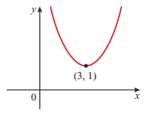
Note: when given a quadratic expression like $x^2 + 4x + 7$ you can 'complete the square' (see page 28) to get $(x + 2)^2 + 3$ and 'read off' the minimum turning point (-2, 3).

Example

Give the coordinates of the minimum turning point of the graph $y = x^2 - 6x + 10$.

Solution

 $y = x^2 - 6x + 10 = (x - 3)^2 + 1$ so $y = x^2$ is moved 3 units to the right and 1 unit up:



The minimum turning point is (3, 1).

Quadratic graphs and factors

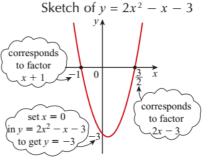
To find the *x*-axis intercepts you set y = 0. For example, the graph $y = 2x^2 - x - 3$ crosses the *x*-axis when $y = 2x^2 - x - 3 = 0$.

Solving this quadratic equation gives:

(2x-3)(x+1) = 0 so $x = \frac{3}{2}$ and x = -1 (see page 67).

The ' x^2 -term' is positive ($2x^2$) and so the graph is 'concave upwards' (see page 70).

The *y*-axis intercept is found when you set x = 0 in the equation.



Sketching quadratic graphs – hints

- $y = ax^2 + bx + c$ If a > 0 (positive) the graph is 'concave upwards'. If a < 0 (negative) the graph is 'concave downwards'.
- Where does it cross the *y*-axis? \rightarrow set x = 0 to find the value of *y*. Where does it cross the *x*-axis? \rightarrow set y = 0 and solve the

resulting equation.

- Complete the square to get $y = (x \pm a)^2 + b$ (see page 71) to find the turning point.
- Plot a few points: choose a value for *x* and calculate *y*.

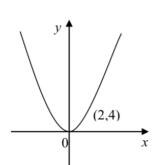
top tip

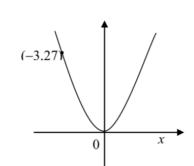
Calculating the **discriminant** $b^2 - 4ac$ tells you a lot about the graph – see page 74.

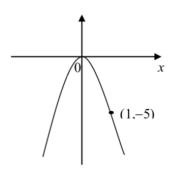
Worksheet

1. Write down the equation of the graphs shown below, which have the form $y = ax^2$.

(Diagrams are not drawn to scale)

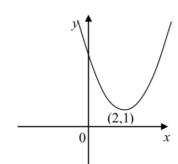


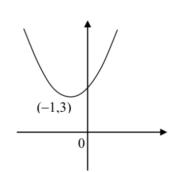


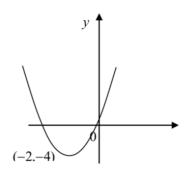


2. Write down the equation of the graphs shown below, which have the form

 $y = (x + a)^2 + b$. (Diagrams are not drawn to scale)







3. Sketch the following quadratic functions

a.
$$y = x(x - 5)$$

b.y =
$$x(x + 7)$$

c.
$$y = (a - 4)(a - 2)$$

d.
$$y = (w+1)(w+2)$$
 e. $y = (x+3)(x-1)$ **f**. $y = (x-4)^2 + 1$

e.
$$y = (x + 3)(x - 1)$$

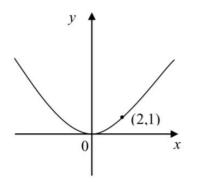
f.
$$y = (x - 4)^2 +$$

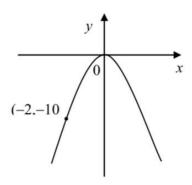
- 3. For each of the equations below, write down
 - i. the turning point
 - ii. its nature
 - iii. the equation of the axis of symmetry
- a.

$$y = (x-3)^2 - 4$$

- d.
- $y = (x-3)^2 + 1$ b. $y = (x-3)^2 4$ c. $y = (x+1)^2 7$ $y = (x+2)^2 + 3$ e. $y = -(x-1)^2 + 5$
- For each equation, draw a suitable sketch and find the roots. $x^2 4x = 0$ b. $x^2 + 8x + 12 = 0$ c. $x^2 5x + 4 = 0$ 4.
- $x^2 4x = 0$

- Write down the equation of the graphs in the form $y = ax^2$ 5.

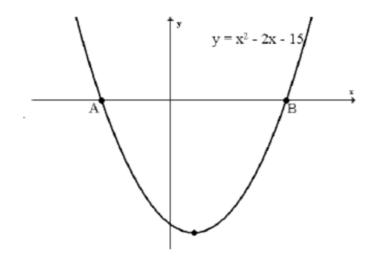




- For each equation, draw a suitable sketch and find the roots. -4x = 0 b) $x^2 + 6x + 8 = 0$ c) $x^2 7x + 10 = 0$
- a) $x^2 4x = 0$

- The diagram shows part of the graph of $y = x^2 2x 15$ 7.
 - a) Find the coordinates of A and B.

Find the minimum turning point on the curve.

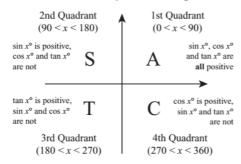


Solving trig equations using the quadrant diagram

Step 1 Rearrange the equation (if possible!) to the form:

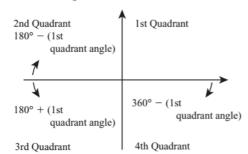
sin(angle) = number
or cos(angle) = number
or tan(angle) = number

Step 2 Is 'number' positive or negative? Use the answer to this question and the quadrant diagram below to find out which quadrant 'angle' is in.



Step 3 Use sin⁻¹ or cos⁻¹ or tan⁻¹ on your calculator and the **positive** value of 'number' to find the 1st quadrant angle.

Step 4 The information from Step 2 and Step 3 is used to calculate the solutions to the equation. Use this diagram:



Step 5 Check your solutions by substituting into the equation to see if they work!

Example

Solve $5\sin x^{\circ} + 1 = 0$, $0 \le x \le 360$

Solution

Step 1

$$5\sin x^{\circ} = -1$$
$$\sin x^{\circ} = -\frac{1}{5}$$

$$\sin x^{\circ} = -0.2$$

Step 2 -0.2 is negative. Using the diagram:

 $\sin x^{\circ}$ is negative in the 3rd quadrant and the 4th quadrant.

Step 3
$$\sin^{-1}(0\cdot 2) = 11\cdot 5^{\circ}$$
 (This is rounded to 1 decimal place.) using a **positive** value

Step 4 The 3rd quadrant angle is $180^{\circ} + 11 \cdot 5^{\circ} = 191 \cdot 5^{\circ}$. The 4th quadrant angle is $360^{\circ} - 11 \cdot 5^{\circ} = 348 \cdot 5^{\circ}$.

Step 5 Checking on the calculator:

$$5\sin 191 \cdot 5^{\circ} + 1 = 0 \cdot 0031....$$

 $5\sin 348 \cdot 5^{\circ} + 1 = 0 \cdot 0031....$
These round to 0!

1.
$$2\sin x - 1 = 0$$

2.
$$2\cos x - \sqrt{3} = 0$$

3.
$$5tanx - 1 = 2$$

4.
$$6sinx + 2 = 3$$

5.
$$3\cos x + 1 = 3$$

6.
$$2tanx + 11 = 20$$

7.
$$5\sin x - 1 = -3$$

8.
$$4\cos x + 7 = 5$$

9.
$$2tanx + 3 = 1$$

10.
$$20sinx + 17 = 25$$