Surds

How do surds behave?

$$\sqrt{4} + \sqrt{9} = 2 + 3 = 5$$
 $\sqrt{4+9} = \sqrt{13} \neq 5$

Compare:

A quick calculator check gives:

$$\sqrt{2+3}$$
 and $\sqrt{2}+\sqrt{3}$

$$\sqrt{2+3} = \sqrt{5} = 2 \cdot 23...$$

Not the same

$$\sqrt{2} + \sqrt{3} = 1.41... + 1.73... = 3.14...$$

$$\sqrt{2\times3} = \sqrt{6} = 2\cdot44\dots$$

They might be the

$$\sqrt{2\times3}$$
 and $\sqrt{2}\times\sqrt{3}$

$$\sqrt{2} \times \sqrt{3} = 1 \cdot 41... \times 1 \cdot 73... = 2 \cdot 44...$$

$$\times \sqrt{3} = 1.41...\times 1.73... = 2.44...$$

$$\sqrt{\frac{2}{3}}$$
 and $\frac{\sqrt{2}}{\sqrt{3}}$

$$\sqrt{\frac{2}{3}} = 0.81...$$

$$\frac{\sqrt{2}}{\sqrt{3}} = \frac{1.41...}{1.73...} = 0.81...$$

They might be the same!

The general rules that are true are:

$$\sqrt{a \times b} = \sqrt{a} \times \sqrt{b}$$
 and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ These can be proved.

Note:
$$\sqrt{a}^2 = \sqrt{a} \times \sqrt{a} = \sqrt{a \times a} = \sqrt{a^2} = a$$

When simplifying a surd look for the highest square number factor.

Simplifying surds

To simplify $\sqrt{108}$ find a factor of 108 that is

So
$$\sqrt{108} = \sqrt{9 \times 12} = \sqrt{9} \times \sqrt{12} = 3 \times \sqrt{12}$$
.

a square number, e.g. 9. You know $108 = 9 \times 12$.

Just as $3 \times x$ is written 3x so $3 \times \sqrt{12}$ is written $3\sqrt{12}$. Now 12 has a square factor of 4.

So
$$3\sqrt{12} = 3 \times \sqrt{4 \times 3} = 3 \times \sqrt{4} \times \sqrt{3}$$

$$=3\times2\times\sqrt{3}=6\times\sqrt{3}=6\sqrt{3}$$

Here is a quicker method:

$$\sqrt{108} = \sqrt{36 \times 3} = \sqrt{36} \times \sqrt{3} = 6 \times \sqrt{3} = 6\sqrt{3}$$

When the number under the root sign is as small as possible (no more square factors other than 1) you have fully simplified the surd.

The square numbers

Examples

Simplify: (a) $\sqrt{96}$ (b) $\sqrt{\frac{81}{100}}$

(a)
$$\sqrt{96} = \sqrt{16 \times 6} = \sqrt{16} \times \sqrt{6} = 4 \times \sqrt{6} = 4\sqrt{6}$$

(b)
$$\sqrt{\frac{81}{100}} = \frac{\sqrt{81}}{\sqrt{100}} = \frac{9}{10} = 0.9$$

Surds

1. Which of these numbers are surds:

$$\sqrt{16}$$
, $\sqrt{65}$, $\sqrt{1}$, $\sqrt[3]{8}$, $\sqrt[3]{9}$, $\sqrt[3]{1}$, $\sqrt{50}$, $\sqrt[3]{33}$, $\sqrt[3]{27}$, $\sqrt{5}$, $\sqrt{1000}$, $\sqrt[3]{-1000}$

2. Find the exact solution of each equation.

(a)
$$x^2 - 5 = 9$$

(b)
$$x^2 + 6 = 36$$

(b)
$$x^2 + 6 = 36$$
 (c) $x^3 - 4 = 60$

(d)
$$x^2 + 11 = 12$$

(e)
$$x^3 - 13 = 26$$

(f)
$$x^3 + 20 = 19$$

Simplifying surds

1. Express in simplest form:

(a)
$$\sqrt{12}$$

(b)
$$\sqrt{20}$$

(c)
$$\sqrt{27}$$

(d)
$$\sqrt{32}$$

(e)
$$\sqrt{45}$$

(f)
$$\sqrt{48}$$

(g)
$$\sqrt{50}$$

(h)
$$\sqrt{63}$$
 (l) $\sqrt{500}$

(i)
$$\sqrt{75}$$
 (m) $5\sqrt{8}$

(j)
$$\sqrt{44}$$
 (n) $3\sqrt{18}$

(j)
$$\sqrt{44}$$
 (k) $\sqrt{98}$ (l) $\sqrt{500}$ (n) $3\sqrt{18}$ (o) $4\sqrt{200}$ (p) $3\sqrt{1000}$

(p)
$$3\sqrt{1000}$$

2. Simplify:

(a)
$$7\sqrt{2} + 3\sqrt{2}$$

(b)
$$9\sqrt{5} - 5\sqrt{5}$$

(c)
$$\sqrt{3} + 6\sqrt{3}$$

(d)
$$4\sqrt{7} - \sqrt{7}$$

(a)
$$7\sqrt{2} + 3\sqrt{2}$$
 (b) $9\sqrt{5} - 5\sqrt{5}$ (c) $\sqrt{3} + 6\sqrt{3}$ (d) $4\sqrt{7} - \sqrt{7}$ (e) $9\sqrt{10} - 9\sqrt{10}$ (f) $\sqrt{5} - 8\sqrt{5}$

(f)
$$\sqrt{5} - 8\sqrt{5}$$

(g)
$$3\sqrt{2} - \sqrt{2} + 7\sqrt{2}$$
 (h) $\sqrt{7} + \sqrt{5} + 2\sqrt{7}$ (i) $2\sqrt{10} - 10\sqrt{2}$

(h)
$$\sqrt{7} + \sqrt{5} + 2\sqrt{7}$$

(i)
$$2\sqrt{10} - 10\sqrt{2}$$

(j)
$$25/+3\sqrt{2}-2\sqrt{5}-\sqrt{2}$$

(j)
$$25/+3\sqrt{2}-2\sqrt{5}-\sqrt{2}$$
 (k) $-4\sqrt{11}+8\sqrt{10}-2\sqrt{11}-2\sqrt{10}$

3. Solve these equations, where necessary leaving the answer as a surd in its simplest form.

(a)
$$x^2 + 8 = 36$$

(b)
$$x^2 - 15 = 60$$

(a)
$$x^2 + 8 = 36$$
 (b) $x^2 - 15 = 60$ (c) $\frac{1}{2}x^2 + 2 = 51$

(d)
$$x^2 - 147 = 0$$

(e)
$$x^3 + 12 = 4$$
 (f) $x^3 - 5 = 49$

(f)
$$x^3 - 5 = 49$$

Multiplication of Surds

1. Simplify:

(a)
$$\sqrt{3} \times \sqrt{3}$$

(b)
$$\sqrt{7} \times \sqrt{7}$$

(c)
$$\sqrt{2a} \times \sqrt{2a}$$

(d)
$$\sqrt{4} \times \sqrt{3}$$

(e)
$$\sqrt{9} \times \sqrt{2}$$

(b)
$$\sqrt{7} \times \sqrt{7}$$
 (c) $\sqrt{2a} \times \sqrt{2a}$
(e) $\sqrt{9} \times \sqrt{2}$ (f) $\sqrt{3} \times \sqrt{25}$
(h) $\sqrt{7} \times \sqrt{3}$ (i) $\sqrt{11} \times \sqrt{2}$
(k) $\sqrt{12} \times \sqrt{3}$ (l) $\sqrt{2} \times \sqrt{50}$
(n) $\sqrt{3} \times \sqrt{6}$ (o) $\sqrt{8} \times \sqrt{12}$

(g)
$$\sqrt{2} \times \sqrt{8}$$

(h)
$$\sqrt{7} \times \sqrt{3}$$

(i)
$$\sqrt{11} \times \sqrt{2}$$

(j)
$$\sqrt{2} \times \sqrt{8}$$

(m) $\sqrt{2} \times \sqrt{10}$

(k)
$$\sqrt{12} \times \sqrt{3}$$

(I)
$$\sqrt{2} \times \sqrt{50}$$

(p)
$$\sqrt{10} \times \sqrt{20}$$

(n)
$$\sqrt{3} \times \sqrt{6}$$

(q) $3\sqrt{2} \times 5\sqrt{2}$

(o)
$$\sqrt{8} \times \sqrt{12}$$

(r) $3\sqrt{5} \times 5\sqrt{3}$

2. Simplify

(a)
$$\sqrt{2}(1+\sqrt{2})$$

(b)
$$\sqrt{3}(\sqrt{3}-1)$$

(c)
$$(1+\sqrt{5})\sqrt{5}$$

(d)
$$\sqrt{7}(5+\sqrt{7})$$

(e)
$$\sqrt{2}(3-2\sqrt{2})$$

(d)
$$\sqrt{7}(5+\sqrt{7})$$

(f) $(3\sqrt{5}-2)\sqrt{5}$

(g)
$$(\sqrt{3}+1)(\sqrt{3}-1)$$

(i) $(3+\sqrt{7})(3-\sqrt{7})$

(h)
$$(\sqrt{5}-2)(\sqrt{5}+2)$$

(e)
$$\sqrt{2}(3-2\sqrt{2})$$
 (f) $(3\sqrt{5}-2)\sqrt{5}$
(g) $(\sqrt{3}+1)(\sqrt{3}-1)$ (h) $(\sqrt{5}-2)(\sqrt{5}+2)$
(i) $(3+\sqrt{7})(3-\sqrt{7})$ (j) $(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$
(k) $(\sqrt{7}-\sqrt{13})(\sqrt{7}+\sqrt{13})$ (l) $(2\sqrt{3}+3\sqrt{2})(2\sqrt{3}-3)$

(j)
$$(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})$$

(k)
$$(\sqrt{7} - \sqrt{13})(\sqrt{7} + \sqrt{13})$$

(k)
$$(\sqrt{7} - \sqrt{13})(\sqrt{7} + \sqrt{13})$$
 (l) $(2\sqrt{3} + 3\sqrt{2})(2\sqrt{3} - 3\sqrt{2})$

(m)
$$(1+\sqrt{3})^2$$

(n)
$$(\sqrt{5}-2)^2$$

(o)
$$(\sqrt{2} + \sqrt{7})^2$$
 (p) $(\sqrt{3} - \sqrt{5})^2$

(p)
$$(\sqrt{3} - \sqrt{5})^2$$

Rationalising the denominator

The denominator is irrational (a surd)

$$\frac{2}{\sqrt{5}} = \frac{2 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{2\sqrt{5}}{5}$$
The denomination (an integer)

The denominator is now rational

Process

You use $\sqrt{a} \times \sqrt{a} = a$ to get rid of the root sign in the denominator.

Example

Express $\frac{2}{\sqrt{18}}$ as a fraction with a rational denominator.

Solution

$$\frac{2}{\sqrt{18}} = \frac{2}{\sqrt{9 \times 2}} = \frac{2}{3\sqrt{2}} = \frac{2 \times \sqrt{2}}{3\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{2}}{3 \times 2} = \frac{\sqrt{2}}{3}$$

Simplify $\sqrt{18}$

multiply top and bottom by $\sqrt{2}$ to rationalise the denominator

divide top and bottom by 2 (cancel by 2)

Further simplification

If you think of $\sqrt{2}$ as an unknown number like x then you can compare

$$2\sqrt{2} + 3\sqrt{2} = 5\sqrt{2}$$

with

$$2x + 3x = 5x$$

Similarly, by comparing with x+3y+4x-y you can simplify

$$\sqrt{3} + 3\sqrt{2} + 4\sqrt{3} - \sqrt{2}$$

$$= \sqrt{3} + 4\sqrt{3} + 3\sqrt{2} - \sqrt{2}$$

$$= 5\sqrt{3} + 2\sqrt{2}$$

top tip

(compare x + y)

Examples

Simplify:

(a)
$$2\sqrt{5} - 3\sqrt{2} + \sqrt{5} + 4\sqrt{2}$$
 (b) $\sqrt{2} + \frac{2}{\sqrt{2}}$

(b)
$$\sqrt{2} + \frac{2}{\sqrt{2}}$$

Solutions

(a) Rewrite as

$$2\sqrt{5} + \sqrt{5} + 4\sqrt{2} - 3\sqrt{2} = 3\sqrt{5} + \sqrt{2}$$

(compare 2x-3y+x+4y)

(b)
$$\sqrt{2} + \frac{2}{\sqrt{2}} = \sqrt{2} + \frac{2 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \sqrt{2} + \frac{2\sqrt{2}}{2} = \sqrt{2} + \sqrt{2} = 2\sqrt{2}$$

Rationalising Denominators

- 1. Rationalise the denominators of these fractions:
- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{5}}$ (c) $\frac{6}{\sqrt{3}}$ (d) $\frac{8}{\sqrt{2}}$

- (e) $\frac{2}{\sqrt{3}}$ (f) $\frac{10}{\sqrt{5}}$ (g) $\frac{7}{\sqrt{3}}$ (h) $\frac{3}{\sqrt{5}}$
- (i) $\frac{4}{5\sqrt{2}}$ (j) $\frac{7}{2\sqrt{5}}$
- 2. Rationalise the denominator of these fractions then simplify:

 - (a) $\frac{1}{\sqrt{20}}$ (b) $\frac{1}{\sqrt{50}}$ (c) $\frac{10}{\sqrt{12}}$ (d) $\frac{7}{\sqrt{18}}$
- 3. Write these fractions in their simplest form with a rational denominator:
- (a) $\frac{\sqrt{9}}{\sqrt{2}}$ (b) $\frac{\sqrt{5}}{\sqrt{3}}$ (c) $\sqrt{\frac{9}{10}}$ (d) $\sqrt{\frac{3}{5}}$
- 4. Rationalise the denominators of these fractions and simplify:

- (a) $\frac{1}{\sqrt{2}-1}$ (b) $\frac{2}{\sqrt{3}-1}$ (c) $\frac{8}{\sqrt{5}+1}$ (d) $\frac{21}{3-\sqrt{2}}$
- (e) $\frac{1}{\sqrt{3}-\sqrt{2}}$ (f) $\frac{2}{\sqrt{7}+\sqrt{2}}$ (g) $\frac{1-\sqrt{3}}{2-\sqrt{5}}$ (h) $\frac{4+\sqrt{5}}{2+\sqrt{3}}$

Indices

The rules of indices

Rule	Comments	Examples
$x^m \times x^n = x^{m+n}$	When multiplying, the indices are added. Note: not in the case $x^m \times y^n$!	$a^2 \times a^3 = a^{2+3} = a^5$
$\frac{x^m}{x^n} = x^{m-n}$	When dividing, the indices are subtracted.	$\frac{c^7}{c^3} = c^{7-3} = c^4$
$(x^m)^n = x^{mn}$	When raising a power to a power, multiply the indices.	$(y^3)^4 = y^{3\times 4} = y^{12}$
$x^{0} = 1$	Any number or expression (other than zero) raised to the power zero gives 1.	$2^{0} = 1$ $\left(\frac{1}{2}\right)^{0} = 1$ $(a+b)^{0} = 1$
$x^{-n} = \frac{1}{x^n}$	Something to a negative power can be rewritten as 1 divided by the same thing to the positive power.	$a^{-1} = \frac{1}{a^1} = \frac{1}{a} a^{-3} = \frac{1}{a^3}$

Fractional indices

top tip

power 3 (cubed)
$$9^{\frac{3}{2}} \longrightarrow \text{power 2 (squared)}$$
square root
$$8^{\frac{3}{2}} \longrightarrow \text{cube root}$$

$$(\sqrt{6})^{\frac{3}{2}} = 2^{\frac{3}{2}} \longrightarrow (\sqrt{6})^{\frac{3}{2}} \longrightarrow (\sqrt{6})$$

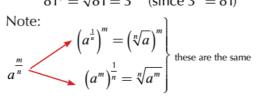
$=(\sqrt{9})^3=3^3=27$ $=(\sqrt[3]{8})^2=2^2=4$

Cube roots

$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$
 (since $2^3 = 8$)
 $27^{\frac{1}{3}} = \sqrt[3]{27} = 3$ (since $3^3 = 27$)

4th Roots

$$16^{\frac{1}{4}} = \sqrt[4]{16} = 2$$
 (since $2^4 = 16$)
 $81^{\frac{1}{4}} = \sqrt[4]{81} = 3$ (since $3^4 = 81$)



Examples

1. Evaluate $16^{\frac{3}{4}} \times 8^{-\frac{4}{3}}$

Solution 1:
$$16^{\frac{3}{4}} \times \frac{1}{8^{\frac{4}{3}}} = \frac{\left(\sqrt[4]{16}\right)^3}{\left(\sqrt[3]{8}\right)^4} = \frac{2^3}{2^4} = \frac{8}{16} = \frac{1}{2}$$

or solution 2: $(2^4)^{\frac{3}{4}} \times (2^3)^{\frac{-4}{3}} = 2^{\left(4 \times \frac{3}{4}\right)} \times 2^{3 \times \left(-\frac{4}{3}\right)}$ using $(x^m)^n = x^{mn}$

$$=2^{3} \times 2^{-4} = 2^{3+(-4)} = 2^{-1} = \frac{1}{2}$$

2. Simplify: (a) $x^{\frac{1}{2}} \times 4x^{-\frac{3}{2}}$ (b) $\left(x^{-\frac{1}{2}}\right)^4$

Solution (a):
$$4x^{\frac{1}{2} + \left(-\frac{3}{2}\right)} = 4x^{\left(-\frac{2}{2}\right)} = 4x^{-1} = \frac{4}{x}$$

Solution (b): $x^{-\frac{1}{2} \times 4} = x^{-2} = \frac{1}{x^2}$

Indices

1. Simplify each expression.

(a)
$$a^5 \times a^4$$

(b)
$$n^{-12} \times n^9$$

(c)
$$c^6 \times c$$

(a)
$$a^5 \times a^4$$
 (b) $n^{-12} \times n^9$ (c) $c^6 \times c$ (d) $d^{\frac{1}{2}} \times d^3$ (e) $3a^4 \times 5a^3$ (f) $4b^9 \times 2b^{-6}$ (g) $8c^8 \times 7c$ (h) $\frac{v^6}{v^2}$ (i) $y^{19} \div y^{-5}$

(e)
$$3a^4 \times 5a$$

(f)
$$4b^9 \times 2b^{-6}$$

(g)
$$8c^8 \times 7c^8$$

(h)
$$\frac{v^6}{v^2}$$

(i)
$$y^{19} \div y^{-1}$$

(j)
$$\frac{k^8}{k}$$

(k)
$$\frac{12c^5}{6c^3}$$

(j)
$$\frac{k^8}{k}$$
 (k) $\frac{12c^5}{6c^3}$ (l) $\frac{48f^{10}}{6f^{-4}}$

(m)
$$30c^6 \div c^4$$
 (n) $(c^6)^5$ (o) $(y^7)^{-5}$

(n)
$$(c^6)^5$$

(o)
$$(y^7)^{-5}$$

(n)
$$(6h^5)^3$$

(q)
$$(2x^{-2})^5$$

$$(r) (xy)^{i}$$

(p)
$$(6h^5)^3$$
 (q) $(2x^{-2})^5$ (r) $(xy)^5$ (s) $(x^2y^3)^4$ (t) $(h^3k^5)^{-8}$

(t)
$$(h^3k^5)^{-8}$$

2. Evaluate:

(a)
$$25^{\frac{1}{2}}$$
 (b) $16^{\frac{1}{4}}$ (c) $125^{\frac{1}{3}}$

(e)
$$8^{\frac{2}{3}}$$

(d)
$$128^{\frac{1}{7}}$$
 (e) $83^{\frac{2}{3}}$ (f) $81^{\frac{3}{4}}$ (g) $1000^{\frac{2}{3}}$ (h) $243^{\frac{3}{5}}$ (i) $625^{-\frac{1}{4}}$

(h)
$$243^{\frac{3}{5}}$$

(i)
$$625^{-\frac{1}{4}}$$

(j)
$$64^{-\frac{5}{6}}$$

3. Simplify:

(a)
$$k^{\frac{1}{2}} \times k^{\frac{1}{4}}$$

(b)
$$t^{\frac{2}{3}} \times t^{\frac{2}{3}}$$

(a)
$$k^{\frac{1}{2}} \times k^{\frac{1}{4}}$$
 (b) $t^{\frac{2}{3}} \times t^{\frac{2}{3}}$ (c) $g^{\frac{3}{4}} \times g^{-\frac{1}{4}}$

(d)
$$\sqrt[3]{y} \times \sqrt[3]{y}$$

(d)
$$\sqrt[3]{y} \times \sqrt[3]{y}$$
 (e) $4d^{-\frac{1}{2}} \times 5d^{\frac{3}{2}}$ (f) $2\sqrt[3]{e} \times 4\sqrt[3]{e^2}$

(f)
$$2\sqrt[3]{e} \times 4\sqrt[3]{e^2}$$

(g)
$$\frac{d^{\frac{2}{3}}}{d^{\frac{1}{3}}}$$
 (h) $d^{\frac{3}{4}} \div d^{\frac{1}{4}}$ (i) $\frac{\sqrt[3]{y}}{\sqrt[3]{y}}$

(h)
$$d^{\frac{3}{4}} \div d^{\frac{1}{4}}$$

(i)
$$\frac{\sqrt[3]{y}}{\sqrt[3]{y}}$$

(j)
$$4d^{\frac{1}{2}} \div 5d^{\frac{3}{2}}$$

(k)
$$\frac{4\sqrt[3]{e}}{2\sqrt[3]{e^2}}$$

(j)
$$4d^{\frac{1}{2}} \div 5d^{\frac{3}{2}}$$
 (k) $\frac{4\sqrt[3]{e}}{2\sqrt[3]{e^2}}$ (l) $\left(4d^{-\frac{1}{2}}\right)^{\frac{3}{2}}$

(m)
$$(7t)^{-2}$$

(m)
$$(7t)^{-2}$$
 (n) $\left(c^3 d^{\frac{1}{2}}\right)^3$ (o) $\left(x^4 y^2\right)^{\frac{1}{2}}$

(o)
$$(x^4y^2)^{\frac{1}{2}}$$

(p)
$$\left(s^{\frac{1}{2}t^{\frac{2}{3}}}\right)^{\frac{2}{3}}$$

Complex Indices

1. Express each fraction as a sum or difference of terms.

(a)
$$\frac{x^6 + x^7}{x^3}$$

(b)
$$\frac{x^{10}-x^{20}}{x^5}$$

(a)
$$\frac{x^6 + x^7}{x^3}$$
 (b) $\frac{x^{10} - x^{20}}{x^5}$ (c) $\frac{x^2 - x^3}{2x^3}$

(d)
$$\frac{2x^4 + 3x^6}{x^6}$$

(e)
$$\frac{x^4-1}{x^2}$$

(d)
$$\frac{2x^4 + 3x^2}{x^6}$$
 (e) $\frac{x^4 - 1}{x^2}$ (f) $\frac{x^{\frac{2}{3}} + x^{\frac{3}{4}} + 2}{x^4}$ (g) $\frac{x^4 + x^5}{2x^2}$ (h) $\frac{x^7 + x^2}{3x^4}$ (i) $\frac{2(x^4 - x^6)}{4x^2}$

(g)
$$\frac{x^4 + x^5}{2x^2}$$

(h)
$$\frac{x^7 + x^2}{2x^4}$$

(i)
$$\frac{2(x^4-x^6)}{4x^2}$$

$$(j) \ \frac{\sqrt[3]{x} + x^2}{x}$$

(k)
$$\frac{2\sqrt{x} + x^2}{\sqrt{x}}$$

(j)
$$\frac{\sqrt[3]{x} + x^2}{x}$$
 (k) $\frac{2\sqrt{x} + x^2}{\sqrt{x}}$ (l) $\frac{6\sqrt[3]{x} + 2\sqrt[4]{x^5}}{\sqrt[3]{x^4}}$

2. Express each fraction as a sum or difference of terms.

(a)
$$\frac{(x+2)^2}{x^3}$$

(a)
$$\frac{(x+2)^2}{x^3}$$
 (b) $\frac{(x+3)(2x-1)}{x}$ (c) $\frac{(1-x)^2}{2x}$

(c)
$$\frac{(1-x)^2}{2x}$$

(d)
$$\left(\frac{3}{x} - 4\right)^2$$

(d)
$$\left(\frac{3}{x}-4\right)^2$$
 (e) $\frac{\left(x^2-5\right)\left(x^2+5\right)}{x^2}$

(f)
$$\left(x + \frac{1}{x}\right)\left(x - \frac{1}{x}\right)$$
 (g) $\frac{(x-1)^2}{\sqrt{x}}$ (h) $\frac{(x+2)^2}{x\sqrt{x}}$

(g)
$$\frac{(x-1)^2}{\sqrt{x}}$$

(h)
$$\frac{(x+2)^2}{x\sqrt{x}}$$

(i)
$$\left(\frac{1}{\sqrt{x}} + \sqrt{x}\right)^2$$